MEMS Device for Quantitative In Situ Mechanical Testing in Electron Microscope
نویسندگان
چکیده
In this work, we designed a micro-electromechanical systems (MEMS) device that allows simultaneous direct measurement of mechanical properties during deformation under external stress and characterization of the evolution of nanomaterial microstructure within a transmission electron microscope. This MEMS device makes it easy to establish the correlation between microstructure and mechanical properties of nanomaterials. The device uses piezoresistive sensors to measure the force and displacement of nanomaterials qualitatively, e.g., in wire and thin plate forms. The device has a theoretical displacement resolution of 0.19 nm and a force resolution of 2.1 μN. The device has a theoretical displacement range limit of 5.47 μm and a load range limit of 55.0 mN.
منابع مشابه
Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films.
A unique technique to perform quantitative in situ transmission electron microscopy (TEM) fatigue testing on ultrathin films and nanomaterials is demonstrated. The technique relies on a microelectromechanical system (MEMS) device to actuate a nanospecimen and measure its mechanical response. Compared to previously demonstrated MEMS-based in situ TEM techniques, the technique takes advantage of ...
متن کاملA MEMS Device for Quantitative in situ Mechanical Testing in Electron Microscope
In this work, we designed a MEMS device which allows simultaneous direct measurement of mechanical properties during deformation under external stress and characterization of the evolution of microstructure of nanomaterials within a transmission electron microscope. This MEMS device makes it easy to establish the correlation between microstructure and mechanical properties of nanomaterials. The...
متن کاملDouble-tilt in situ TEM holder with multiple electrical contacts and its application in MEMS-based mechanical testing of nanomaterials.
MEMS and other lab-on-a-chip systems are emerging as attractive alternatives to carry out experiments in situ the electron microscope. However, several electrical connections are usually required for operating these setups. Such connectivity is challenging inside the limited space of the TEM side-entry holder. Here, we design, implement and demonstrate a double-tilt TEM holder with capabilities...
متن کاملIn situ nanomechanical testing in focused ion beam and scanning electron microscopes.
The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor...
متن کاملExperimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures
New materials and nanostructures with superior electro-mechanical properties are emerging in the development of novel devices. Engineering application of these materials and nanostructures requires accurate mechanical characterization, which in turn requires development of novel experimental techniques. In this paper, we review some of the existing experimental techniques suitable to investigat...
متن کامل